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An estimated 300,000 Americans die each yearfrom
cardiac arrhythmias. Historically, drug therapy or
surgery were the onl) treatment options available for
patients suffering from arrhythmias. Recently,
implantable arrhythmia management devices have
been developed. These devices allow abnormal
cardiac rhythms to be sensed and corrected in vivo.
Proper arrhythmia classification is critical to
selecting the appropriate therapeutic intervention.
The classification problem is made more challenging
by the power/computation constraints imposed by the
short battery life of implantable devices. Current
devices utilize heart rate-based classification
algorithms. Although easy to implement, rate-based
approaches have unacceptably high error rates in
distinguishing supraventricular tachycardia (SVT)
from ventricular tachycardia (VT). Conventional
morphology assessment techniques used in ECG
analysis often require too much computation to be
practicalfor implantable devices.

In this paper, a computationally-efficient, arrhythmia
classification architecture using correlation-based
morphology assessment is presented. The
architecture classifies individual heart beats by
assessing similarity between an incoming cardiac
signal vector and a series of prestored class
templates. A series of these beat classifications are
used to make an overall rhythm assessment. The
system makes use ofseveral new results in the field of
pattern recognition.

The resulting system achieved excellent accuracy in
discriminating SVTand VT.

INTRODUCTION

An estimated 300,000 Americans die each year from
ventricular arrhythmias'. Historically, once a patient
was diagnosed with ventricular tachycardia (VT) or
ventricular fibrillation (VF), treatment involving drug
therapy or surgery was mandated. Both treatment
options have serious shortcomings.

A third treatment option, the implantable cardioverter
defibrillator (ICD), has emerged over the last ten
years offering radically improved outcomes for
patients suffering from VT or VF. The ICD analyzes
the electrical activity of the heart from electrodes
attached directly to its surface. The sensed waveform
is called an electrogram (EGM). When a ventricular
tachyarrhythmia is sensed, pacing pulses or higher
energy shocks are delivered to return the patient to a
normal rhythm.
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Since different therapeutic interventions are
mandated for different arrhythmias, a key success
factor for the ICD is error-free (or near error-free)
arrhythmia classification.

Severe power constraints imposed on implantable
devices complicate matters. Because of the
relationship between dissipated power and
computation speed, a power constraint effectively
imposes a computation constraint. As a result, most
existing ICDs make use of simple heart rate-based
classification algorithms. Unfortunately, rate-based
algorithms suffer notable shortcomings in
discriminating supraventricular tachycardia (SVT)
from ventricular tachycardia (VT).

Previous work has demonstrated that morphology
assessment (e.g. measuring the shape of beats,
instead of the time interval between them) can
improve SVTNT discrimination2. However, the
computation required for quantitative morphology
assessment has prevented its widespread use in ICDs.

In this paper minimum computation arrhythmia
classification techniques using morphology
assessment are developed. The proposed architecture
(see Fig. 1) consists of a preprocessor, a beat
classifier and a rhythm classifier. The preprocessor
filters and digitizes the analog EGM. The beat
classifier calculates the sample correlation coefficient
between an EGM signal vector and a series of
preconstructed VT and SVT beat templates. The
signal vector is assigned to the beat class with whose
template it has the maximum correlation coefficient.
The beat classification is used as a building block for
an SVTIVT rhythm classifier. The rhythm classifier
assesses the more prevalent class amongst the five
most recent beat classifications (majority decision
rule) to determine the prevailing rhythm.

Unfiltered
EGM Beat Rhythm T

0 - Preprocessor Classifier Cassifier

Figure I -System Block Diagram I

In practice, the proposed architecture would augment
a conventional rate-based approach.
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METHODS

To be feasible, the proposed SVTNVT arrhythmia
classification system must be both fast and accurate.
Methods for optimal template construction, and
acceleration techniques are first briefly presented.
The reader is referred to the literature3 for complete
details. Finally, the SVTNVT discrimination of the
proposed system is tested and compared to a rate-
based system.

Beat Classifier Design Issues
Optimal Template Construction. A beat class
template is constructed using a series of noisy
realizations from that class. It can be shown3 using
the method of Lagrange multipliers that the optimal
template (defined as that which maximizes the mean
correlation coefficient between the template and a set
of realizations) is formed by first normalizing each
realization to be zero mean and unit length, then
adding the resulting vectors together and
renormalizing the result.

One potential complication is that the optimal
template construction method assumes that the
realizations are correctly registered (aligned). An
iterative approach is required because the flrst,
registration stage assumes that the template T is
known, but this is not the case and estimation of T is
the goal of the entire procedure. An initial guess is
made of T, using the best initial estimate of the
correct registration. T is subsequently refined through
iteration (i.e. repeated registration and recomputation
of T, until T is relatively stable).

The selection of the number of realizations to use in
template construction is highly problem dependent.
Using more beats requires greater computation but
usually generates templates with higher signal-to-
noise ratios. Five beats was experimentally
determined to be adequate for the construction of
good SVT/VT templates. Only two iterations were
required.

Acceleration Techniques. Let S be a signal vector
and T be a template vector, both of length N. Let s
be the sample mean of the signal vector. Since the
template is of zero mean and unit length, the product
moment correlation coefficient is defined as:
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(1)

The computation of (1) for every possible registration
of each template is very compute-intensive. Given
that current generation ICDs make use of low

power/low clock rate 8-bit microcontrollers (e.g.
1OOKHz 6502 in one leading model), significant
acceleration must be obtained. Various acceleration
methods are now described.

Template Size and Sampling Rate
The most obvious method of reducing the
computational burden is to reduce the template size
and sampling rate. Based upon a time and frequency
domain analysis of SVTIVT beats, a 250 Hz
sampling rate and 50-sample template was selected.

Registration-level Acceleration
Sum of Absolute Differences (SAD). A simple R
wave detector may be used to determine, coarsely,
when a beat is occuring. Unfortunately, such
detectors can usually only determine the best
alignment to within +/- 5 samples (40 msec). To
perform morphology assessment, a more precise
determination is required. Translational registration
is the process of selecting the best alignment between
the signal vector and a given template. Because
multiplication is so computationally expensive on the
CISC microcontrollers found in ICDs, it is
undesirable to perform the registration with a
correlation coefficient similarity metric. Registration
is instead performed using a sum of absolute
differences (SAD) metric.

To evaluate a given registration, SAD pointwise
subtracts the template from the signal vector. The
absolute value of the difference between template
and signal samples are summed. The registration
which produces the minimum SAD is deemed best.
The search space for the optimal translational
registration is restricted to +1-5 samples about the R-
wave detector selected registration.

Registration Stopping. SAD may be accelerated
using a technique called registration stopping. This
technique makes use of the fact SAD is a non-
decreasing function. Consider the calculation of the
SAD for a given registration. If the partial SAD
obtained after the first n samples for this registration
exceeds the complete SAD value obtained for
another registration, it cannot be the best registration.
Under such circumstances, it is not necessary to
complete the rest of the SAD calculation. In practice,
a single checkpoint of n=15 produces the greatest
accelerations.

Once the best registration has been found, it is
necessary to calculate (1) for each template. Several
acceleration techniques which speed the computation
of correlation coefficient are now presented.

Template-level Acceleration
Template Stopping. To perform beat classification,
we need only determine which template has the
higher correlation coefficient with the signal vector.
A version of the Triangle Inequality involving
correlation coefficient may be developed. An
acceleration technique called template stopping
makes use of this inequality:
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Given two templates T, and T, and a signal vector S
to be classified,

If'r-(, T >
l+r(7T,)T

If r(S,7)I> 2 then r(S, T; ) > r(S, Tj)

The reader is referred to the literature'for a complete
development and proof of the algorithm.
Qualitatively, the template stopping technique states
that if the correlation coefficient between S and the
template, T, exceeds a certain threshold (which is a
function of r(T,, T.) ) then T, is guaranteed to be more
correlated with the signal vector than T.. Under these
circumstances, we need not calculate the correlation
coefficient between S and T,.
Template Ordering. Template ordering determines
the order in which the correlation coefficients are
calculated. The general rule is to calculate the
correlation coefficient of the most likely template(s)
first.

In a non-stationary application like EGM beat
classification, probabilities should be conditioned on
recent events. A statistical likelihood predictor using
recent beat classifications could be used to determine
the likelihood of the next EGM beat. In the interest of
computational simplicity, the last beat classification
will be utilized to select the order of calculation.

Sample-level Acceleration
Sample Stopping. In calculating (1), it would be
desirable to prematurely terminate the computation
for obviously bad template candidates. Sample
stopping is an acceleration technique that provides
this capability. After the first k terms (where k is a
problem dependent variable) are calculated, an upper
and lower bound on the full correlation coefficient is
calculated and used to assess whether the remaining
terms should be computed.

For notational simplicity, let S and T be zero mean,
and unit length. Divide the calculation of (1) into two
pieces:

k N
r(S, T) = sjtj + Sitj (2)

j=l j=k+1

By the Cauchy-Schwartz inequality, we may bound
the second summation in (2) from above and below:
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Since we have normalized the signal vector to unit
length, the inequality may be further simplified:

N NN
_ c < . (4)

j=k+i j=k+I j=k+I

Substituting (4) into (2) yields the desired upper and
lower bound:

k N N
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(6)

Substituting into (5) yields:

rp,ia, (S, T) - |T < r(S, T) < r,,p,1 (S, T) + ITrSIduaLII

(7)
With the values of the template residual terms
precomputed and stored, we may use the inequality
to determine after calculating the first k terms of the
correlation whether to complete or terminate the
calculation. When combined with template stopping,
sample stopping provides a potent acceleration in the
two class case:

1) If the first k terms of the first template calculation
are bounded from below by a value higher than the
template stopping threshold, we need not finish the
calculation. The first template is guaranteed to have a
higher correlation coefficient with the signal vector
than the second template. If this condition is not met,
we must complete the calculation of the first template
correlation coefficient.

2) Acceleration can also be achieved during the
calculation of the correlation coefficient with the
second template. If the upper bound for the second
template correlation after k samples is less than the
first template correlation, then there is no point in
completing the computation of the second template
correlation. The first template is guaranteed to have a
higher correlation coefficient.

Conversely, if after k samples the lower bound for
the second template correlation coefficient is greater
than the first template correlation coefficient the
second template is guaranteed to be a better match.
Under these circumstances, we need not finish the
calculation of the second correlation coefficient.

k can be selected based on its impact on the template
residual. Typically, k is selected so as to bound r by a
small, known residual. This has the desirable effect
of enhancing the efficacy of sample stopping and
template stopping. In practice, the selection of k is
highly problem dependent.

Sample Ordering. A little thought should confirm
that not all pairs of sample and template points are
created 'equally'. Those pairs with the greatest,
positive product contribute the most to the value of
the whole summation. Calculating the terms of
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correlation coefficient out-of-order can reduce the
residuals in sample stopping.

If the templates points are sorted in order of
descending absolute value, the residual in (7) will be
minimized. The computational burdens of sample
ordering are minimal, since sorting is only done
whenever the template is updated.

For EGM beat templates, k=15 usually provides a
residual of less than 0.01.

Rhythm Classifier Design Issues
The number of beats to use for rhythm assessment is
a design tradeoff between time to classification and
probability of error. If the beat errors are assumed to
be independent, then it is a simple matter to use the
binomial formula to determine the number of beats
required to achieve a desired rhythm classification
error rate.

For example, with an individual beat error rate of
0.01, a five beat rhythm assessment should have an
error rate of 10 5.

A more detailed analysis, which includes the
possibility of non-SVT or VT beats (such as PVCs)
is included in Wilkins3.

Preprocessor Design
The preprocessor consists of an anti-alias filter and
an A/D converter.

To minimize computation, the sampling rate is set to
the lowest level consistent with good performance.
Most commonly an anti-alias filter is designed as a
low pass filter with an upper cutoff selected to
prevent aliasing.

Based upon a temporal and spectral analysis of the
EGM, a 12-bit, 250 Hz A/D converter was chosen.
The choice of the upper cutoff frequency for the anti-
alias filter is somewhat constrained. Allowing for a
physically-realizable transition band, the cutoff
cannot exceed 115 Hz and still prevent aliasing.
Conversely, the cutoff cannot be reduced
substantially below 115 Hz or classification accuracy
is compromised.

This simplistic approach to the design of an anti-alias
filter masks a deeper question. Since filtering
changes the morphology of beats, it can have a
significant impact on the efficacy of the acceleration
techniques. Filtering can thus rightly be thought of as
an acceleration technique in its own right. What
impact does filtering have on the computational
requirements of the proposed architecture? What is
the 'optimal' filter?

Because of the difficulty of realizing analog filters
with arbitrary transfer functions, the search space was
restricted to easily implemented bandpass designs. A
121-tap linear phase FIR bandpass filter was used to
simulate the effects of an analog anti-alias filter. An

optimal lower cutoff frequency of 10 Hz and upper
cutoff of 115 Hz was determined using non-linear
programming techniques. The 10-1 15Hz band pass
filter reduced computation by nearly one-third versus
a conventional 1 15 Hz low pass anti-alias filter.

Experimental Design
Clinical data was gathered to test the efficacy of the
proposed system. SVTIVT discrimination was
evaluated for the proposed architecture and compared
to a rate-based approach.

Patient Population. Eighteen recordings from eight
patients (6 men/2 women) aged 52 to 85 were
obtained. In all, a test set (exclusive of the samples
used to construct templates for each patient) of 387
five beat VT segments and 944 five beat SVT
segments were obtained. Data were gathered
pursuant to an IRB-approved study by Ventritex, Inc.
Written consent was obtained from participants.

Data Acquisition. Bipolar (1 cm) distal ventricular
electrograms were recorded during routine clinical
studies in the cardiac electrophysiology laboratory
(see Figure 2). One 8 French and two 6 French side-
arm sheaths (Cordis Corp., Miami, FL, USA) were
positioned in the right femoral vein using the
Seldinger technique. Three 6 French quadrapolar
electrode catheters (USCI Division, C.R. Bard Inc.,
Billerica, MA, USA) with an interelectrode distance
of 1 cm were introduced and advanced under
fluoroscopic guidance. One electrode catheter was
positioned in the high right atrium or right atrial
appendage. Two electrode catheters were positioned
in the right ventricular apex for right ventricular apex
pacing and recording, respectively.

Sustained monomorphic ventricular tachycardia and
supraventricular tachycardia were induced by
programmed stimulation or alternating current. After
signal amplification and bandpass filtering (1-500
Hz) bipolar intraventricular electrograms were
recorded continuously on FM magnetic tape at a tape
speed of 9.5 cm/sec (Hewlett-Packard Model 3968A,
San Diego, CA, USA). The recorded ventricular
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electrograms were subsequently replayed and
digitized on an IBM PC/XT personal computer at
1KHz with 12-bit resolution using a Tecmar Lab
Master (Scientific Solutions, Inc., Solon, OH, USA)
Analog-to-Digital Converter. Based upon subsequent
spectral analysis, the data were decimated to a 250
Hz sampling rate using a 101 tap Chebyshev low
pass filter with a 115 Hz cutoff frequency. The filter
provides attention of more than 30 dB for frequencies
above 125 Hz.

Expert Classification. Each recording was annotated
by a cardiac electrophysiologist to ensure an accurate
interpretation of each arrhythmia. Individual beats
were classified as well as rhythm classifications of
segments of five beats. To ensure proper
classification, the electrophysiologist made use of
atrial and ventricular EGM recordings as well as a
surface ECG.

The expert was used as a gold standard to provide the
'correct' classification for each EGM beat and rhythm
segment. The classification of the correlation-based
architecture and a rate-based algorithm was then
compared to that of the human expert.

Correlation-Based Classification. The correlation-
based arrhythmia classification system described in
this paper was used to perform SVT/VT rhythm
classification.

Rate-Based Classification. A rate-based approach
utilizing interval regularity was implemented to
discriminate SVT and VT rhythms. Segments of five
consecutive beats were analyzed. If the minimum and
maximum of the four R-R intervals varied from each
other by less than 30 milliseconds, the segment was
classified as VT. Otherwise, the segment was
classified as SVT. Thirty milliseconds was
determined experimentally to be the optimal value in
discriminating SVT and VT for the patient
population under study.

RESULTS AND DISCUSSION

Acceleration
A number of novel acceleration techniques were
described to perform correlation-based morphology
assessment. By using all of the aforementioned
acceleration techniques, only 70 multiplications and
720 additions are typically required per classified
beat. Accelerations of more than 15X were measured
experimentally, compared with an approach using the
full computation of (1) for both registration and
classification. The computation required to
implement the proposed system is within the limits of
presently available microcontrollers.

Classification
The rate-based and correlation-based system's
performance in classifying segments of five
consecutive beats was then tested. Using the data
from eight patients exhibiting both VT and SVT, 387

5 beat segments of VT were excised and 944
segments of SVT were excised and classified by both
techniques. The rate-based system achieved an error
rate of 5.7% (22/387 misclassified) for VT segments
and 5.5% (52/944 misclassified) for SVT segments.
The correlation-based system had an error rate of 0%
(0/387 misclassified) for VT segments and just 0.2%
(2/944 misclassified) error rate for SVT segments.
The results are summarized in Table 1.

Rate-Based Correlation-Based
System System

VT SVT VT SVT

365 22 387 0
VT VT
SVT 52- 892 SVT 2 942

Table 1 -Experimental Results

Given the small number of patients in the study, care
must be taken in interpreting the results.
Nevertheless, these initial results are encouraging. At
present, a larger test database is being constructed to
more definitively benchmark the proposed system.

CONCLUSION

A computationally-efficient, arrhythmia classification
architecture using correlation-based morphology
assessment was presented. The architecture classifies
individual heart beats by assessing similarity between
an incoming cardiac signal vector and a series of
prestored class templates. A series of these beat
classifications are used to make an overall rhythm
assessment. The system makes use of several new
results in the field of pattern recognition.

The resulting system achieved excellent accuracy in
discriminating SVT and VT, and compared favorably
to a rate-based approach.
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